Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Clin Med ; 12(6)2023 Mar 13.
Article in English | MEDLINE | ID: covidwho-2261108

ABSTRACT

Coronavirus disease (COVID-19) is a respiratory disease, although arterial function involvement has been documented. We assess the impact of a post-acute COVID-19 rehabilitation program on endothelium-dependent vasodilation and arterial wall properties. We enrolled 60 convalescent patients from COVID-19 and one-month post-acute disease, who were randomized at a 1:1 ratio in a 3-month cardiopulmonary rehabilitation program (study group) or not (control group). Endothelium-dependent vasodilation was evaluated by flow-mediated dilation (FMD), and arterial wall properties were evaluated by carotid-femoral pulse wave velocity (cf-PWV) and augmentation index (AIx) at 1 month and at 4 months post-acute disease. FMD was significantly improved in both the study (6.2 ± 1.8% vs. 8.6 ± 2.4%, p < 0.001) and control groups (5.9 ± 2.2% vs. 6.6 ± 1.8%, p = 0.009), but the improvement was significantly higher in the study group (rehabilitation) (p < 0.001). PWV was improved in the study group (8.2 ± 1.3 m/s vs. 6.6 ± 1.0 m/s, p < 0.001) but not in the control group (8.9 ± 1.8 m/s vs. 8.8 ± 1.9 m/s, p = 0.74). Similarly, AIx was improved in the study group (25.9 ± 9.8% vs. 21.1 ± 9.3%, p < 0.001) but not in the control group (27.6 ± 9.2% vs. 26.2 ± 9.8 m/s, p = 0.15). Convalescent COVID-19 subjects of the study group (rehabilitation) with increased serum levels of circulating IL-6 had a greater reduction in FMD. Conclusively, a 3-month cardiopulmonary post-acute COVID-19 rehabilitation program improves recovery of endothelium-dependent vasodilation and arteriosclerosis.

2.
J Interv Card Electrophysiol ; 2022 Sep 05.
Article in English | MEDLINE | ID: covidwho-2250124

ABSTRACT

BACKGROUND: The strategy of cardiac implantable electronic device (CIED) implantations performed as day-case admissions has gained a wider acceptance overtime; however, data on safety are still limited. This study aims to investigate the safety of a same-day discharge protocol introduced in our hospital for the postprocedural management of patients undergoing CIED implantation. METHODS: Α prospective, non-interventional, non-randomised study performed in a single high-volume implanting centre for a 16-month period (March 2020 to June 2021). At total of 821 of 965 (85.1%) patients scheduled for elective CIED implantation were considered to be eligible for inclusion in the Short-stay Device Management Protocol. These patients were compared with a historical group of 932 patients, meeting the same inclusion criteria. RESULTS: Procedure was successful in 812 patients (98.9%), committed to same-day discharge versus 921 of 932 patients (98.8%) admitted for overnight stay (p = 0.87). Overall, 90-day complication rate was comparable in both groups (4.14% vs 4.07%, p = 0.95), as was major (1.46% vs. 1.82%, p = 0.55) and minor (2.67% vs. 2.25%, p = 0.64) complication rates. The composite early post-procedural complication rates and late post-procedural complication rates were comparable among groups (0.97 vs 1.18%, p = 0.70 and 0.73% vs 0.64%, p = 0.83, respectively). Six hundred sixty-seven patients (84%) preferred the same-day discharge strategy. Finally, a reduction of 792 bed-days was recorded, resulting in possible financial Health System benefits. CONCLUSIONS: Same-day discharge is feasible and safe in the majority of patients referred for CIED implantation. Additionally, same-day discharge is preferred by patients and may reduce procedure-related costs due to significant bed-day reductions.

3.
Heart Vessels ; 2022 Sep 28.
Article in English | MEDLINE | ID: covidwho-2233943

ABSTRACT

Coronavirus disease-19 (COVID-19) has extended implications namely the long COVID-19 syndrome. We assessed over-time changes in left ventricular (LV) function, aortic stiffness, autonomic function, and ventricular-arterial coupling (VAC) in post-COVID-19 patients. We followed 34 post-COVID-19 subjects, up to 6 months post-hospital discharge. Subjects without COVID-19 served as control. We evaluated LV global longitudinal strain (LV-GLS), arterial stiffness [carotid-femoral pulse wave velocity (cf-PWV)], and heart rate variability -standard deviation of normal RR intervals (SDNN). VAC was estimated as the ratio of cf-PWV to LV-GLS. Post-COVID-19 individuals (1-month post-hospital discharge) presented with impaired LV-GLS [-18.4%(3.1) vs. -22.0%(2.7), P < 0.001], cf-PWV [12.1 m/s (3.2) vs. 9.6 m/s (1.9), P < 0.001], SDNN [111.3 ms (22.6) vs. 147.2 ms (14.0), P < 0.001], and VAC [-0.68 (0.22) vs. -0.44 (0.10), P < 0.001] compared to control. LV-GLS, SDNN, and VAC improved at the 6-month follow-up however they did not reach control levels. In post-COVID-19 subjects, SDNN and VAC were correlated at the 1-month (R = 0.499, P = 0.003) and 6-month (R = 0.372, P = 0.04) follow-up. Long COVID-19 syndrome was associated with impaired LV-GLS, SDNN, and VAC. Post-COVID-19 subjects presented with autonomic dysregulation associated with aortic stiffness, ventricular-arterial impairment, and LV dysfunction, even 6-months post-hospital discharge. These abnormalities may be related to the presence of long COVID-19 syndrome.

4.
Lancet Digit Health ; 4(10): e705-e716, 2022 10.
Article in English | MEDLINE | ID: covidwho-2221542

ABSTRACT

BACKGROUND: Direct evaluation of vascular inflammation in patients with COVID-19 would facilitate more efficient trials of new treatments and identify patients at risk of long-term complications who might respond to treatment. We aimed to develop a novel artificial intelligence (AI)-assisted image analysis platform that quantifies cytokine-driven vascular inflammation from routine CT angiograms, and sought to validate its prognostic value in COVID-19. METHODS: For this prospective outcomes validation study, we developed a radiotranscriptomic platform that uses RNA sequencing data from human internal mammary artery biopsies to develop novel radiomic signatures of vascular inflammation from CT angiography images. We then used this platform to train a radiotranscriptomic signature (C19-RS), derived from the perivascular space around the aorta and the internal mammary artery, to best describe cytokine-driven vascular inflammation. The prognostic value of C19-RS was validated externally in 435 patients (331 from study arm 3 and 104 from study arm 4) admitted to hospital with or without COVID-19, undergoing clinically indicated pulmonary CT angiography, in three UK National Health Service (NHS) trusts (Oxford, Leicester, and Bath). We evaluated the diagnostic and prognostic value of C19-RS for death in hospital due to COVID-19, did sensitivity analyses based on dexamethasone treatment, and investigated the correlation of C19-RS with systemic transcriptomic changes. FINDINGS: Patients with COVID-19 had higher C19-RS than those without (adjusted odds ratio [OR] 2·97 [95% CI 1·43-6·27], p=0·0038), and those infected with the B.1.1.7 (alpha) SARS-CoV-2 variant had higher C19-RS values than those infected with the wild-type SARS-CoV-2 variant (adjusted OR 1·89 [95% CI 1·17-3·20] per SD, p=0·012). C19-RS had prognostic value for in-hospital mortality in COVID-19 in two testing cohorts (high [≥6·99] vs low [<6·99] C19-RS; hazard ratio [HR] 3·31 [95% CI 1·49-7·33], p=0·0033; and 2·58 [1·10-6·05], p=0·028), adjusted for clinical factors, biochemical biomarkers of inflammation and myocardial injury, and technical parameters. The adjusted HR for in-hospital mortality was 8·24 (95% CI 2·16-31·36, p=0·0019) in patients who received no dexamethasone treatment, but 2·27 (0·69-7·55, p=0·18) in those who received dexamethasone after the scan, suggesting that vascular inflammation might have been a therapeutic target of dexamethasone in COVID-19. Finally, C19-RS was strongly associated (r=0·61, p=0·00031) with a whole blood transcriptional module representing dysregulation of coagulation and platelet aggregation pathways. INTERPRETATION: Radiotranscriptomic analysis of CT angiography scans introduces a potentially powerful new platform for the development of non-invasive imaging biomarkers. Application of this platform in routine CT pulmonary angiography scans done in patients with COVID-19 produced the radiotranscriptomic signature C19-RS, a marker of cytokine-driven inflammation driving systemic activation of coagulation and responsible for adverse clinical outcomes, which predicts in-hospital mortality and might allow targeted therapy. FUNDING: Engineering and Physical Sciences Research Council, British Heart Foundation, Oxford BHF Centre of Research Excellence, Innovate UK, NIHR Oxford Biomedical Research Centre, Wellcome Trust, Onassis Foundation.


Subject(s)
COVID-19 , SARS-CoV-2 , Angiography , Artificial Intelligence , COVID-19/diagnostic imaging , Cytokines , Humans , Inflammation/diagnostic imaging , Prospective Studies , State Medicine , Tomography, X-Ray Computed
5.
Vascul Pharmacol ; 144: 106975, 2022 06.
Article in English | MEDLINE | ID: covidwho-2184357

ABSTRACT

BACKGROUND: Coronavirus disease-19 (COVID-19) is implicated by active endotheliitis, and cardiovascular morbidity. The long-COVID-19 syndrome implications in atherosclerosis have not been elucidated yet. We assessed the immediate, intermediate, and long-term effects of COVID-19 on endothelial function. METHODS: In this prospective cohort study, patients hospitalized for COVID-19 at the medical ward or Intensive Care Unit (ICU) were enrolled and followed up to 6 months post-hospital discharge. Medical history and laboratory examinations were performed while the endothelial function was assessed by brachial artery flow-mediated dilation (FMD). Comparison with propensity score-matched cohort (control group) was performed at the acute (upon hospital admission) and follow-up (1 and 6 months) stages. RESULTS: Seventy-three patients diagnosed with COVID-19 (37% admitted in ICU) were recruited. FMD was significantly (p < 0.001) impaired in the COVID-19 group (1.65 ± 2.31%) compared to the control (6.51 ± 2.91%). ICU-treated subjects presented significantly impaired (p = 0.001) FMD (0.48 ± 1.01%) compared to those treated in the medical ward (2.33 ± 2.57%). During hospitalization, FMD was inversely associated with Interleukin-6 and Troponin I (p < 0.05 for all). Although, a significant improvement in FMD was noted during the follow-up (acute: 1.75 ± 2.19% vs. 1 month: 4.23 ± 2.02%, vs. 6 months: 5.24 ± 1.62%; p = 0.001), FMD remained impaired compared to control (6.48 ± 3.08%) at 1 month (p < 0.001) and 6 months (p = 0.01) post-hospital discharge. CONCLUSION: COVID-19 patients develop a notable endothelial dysfunction, which is progressively improved over a 6-month follow-up but remains impaired compared to healthy controls subjects. Whether chronic dysregulation of endothelial function following COVID-19 could be accompanied by a residual risk for cardiovascular and thrombotic events merits further research.


Subject(s)
COVID-19 , COVID-19/complications , Cohort Studies , Endothelium, Vascular , Humans , Prospective Studies , Vasodilation/physiology , Post-Acute COVID-19 Syndrome
6.
Vaccines (Basel) ; 10(11)2022 Oct 28.
Article in English | MEDLINE | ID: covidwho-2090393

ABSTRACT

Sports have been majorly impacted by the COVID-19 pandemic. After the lockdown period, vaccination and protocols were implemented to return to normality. We aimed to assess the attitudes and practices related to COVID-19 vaccination among athletes, and to record adverse effects of vaccination, if any. A questionnaire was distributed to 1012 male and female athletes, 15+ years old, within the region of Athens. Vaccination coverage with at least one dose was 93.5%, whereas 53.9% were fully vaccinated. More than half of the participants were infected with SARS-CoV-2 at the time of the study. More than 90% of the participants, considered the vaccines as safe, effective and important for public health. Concern about potential side-effects was raised especially by women athletes (59.1% of women compared to 42.2% of men, p < 0.001). The main reasons for avoiding vaccination were fear of vaccine safety, concern about the short time period for vaccine development and testing and doubt of risk of being exposed to SARS-CoV-2 infection. The main reported side-effects were pain at the injection site, fatigue, fever and headache. Approximately two thirds of the participants reported that vaccination did not affect their training, and none reported missing participation in scheduled athletic events. Participants reported high compliance to preventive measures by themselves and fellow athletes, but low satisfaction regarding the implementation of public protocols and the flow of information provided by the authorities. Athletes of older age and those less concerned about potential side-effects were more likely to get fully vaccinated. Nevertheless, the vast majority of the athletes in our study were vaccinated for COVID-19 despite any hesitation regarding effectiveness, safety, or potential side-effects from the vaccines.

7.
Curr Pharm Des ; 28(39): 3225-3230, 2022.
Article in English | MEDLINE | ID: covidwho-2089588

ABSTRACT

BACKGROUND: Coronavirus Disease-19 (COVID-19) is implicated in endotheliitis, which adversely affects cardiovascular events. The impact of vaccination with COVID-19 on the clinical outcome of patients is documented. OBJECTIVE: To evaluate the impact of vaccination with COVID-19 on the severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) infection-related endothelial impairment. METHODS: We enrolled 45 patients hospitalized for COVID-19 (either vaccinated or not against SARS-CoV-2). Clinical and laboratory data were collected, and brachial artery flow-mediated dilation (FMD) was evaluated. Subjects without COVID-19 were used as the control group. RESULTS: There was no difference in age (64.7 ± 7.5 years vs. 61.2 ± 11.1 years vs. 62.4 ± 9.5, p = 0.28), male sex (49% vs. 60% vs. 52%, p = 0.71), control subjects, vaccinated, and unvaccinated subjects with COVID-19, respectively. Of the patients with COVID-19, 44% were vaccinated against SARS-CoV-2. Unvaccinated COVID-19 patients had significantly impaired FMD compared to vaccinated COVID-19 patients and Control subjects (2.05 ± 2.41 % vs. 7.24 ± 2.52% vs. 7.36 ± 2.94 %, p <0.001). Importantly, post hoc tests revealed that unvaccinated COVID-19 patients had significantly impaired FMD from both Vaccinated COVID-19 subjects (p <0.001) and from Control subjects (p <0.001). There was no difference in FMD between the control group and the vaccinated COVID-19 group (p = 0.99). CONCLUSION: Hospitalized patients with COVID-19 present endothelial dysfunction in the acute phase of the disease. Endothelial function in unvaccinated patients with COVID-19 is impaired compared to control subjects as well compared to vaccinated patients with COVID-19. Vaccinated hospitalized subjects with COVID-19 do not show endothelial dysfunction, strengthening the protective role of vaccination against SARS-CoV-2.


Subject(s)
COVID-19 , Vascular Diseases , Humans , Male , Middle Aged , Aged , SARS-CoV-2 , COVID-19/prevention & control , Vaccination
9.
World J Virol ; 11(4): 216-220, 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-2056078

ABSTRACT

Coronavirus disease 2019 (COVID-19) is associated with poor cardiovascular outcomes in patients with heart failure (HF) of all categories of ejection fraction (EF), but mainly in patients with HF with reduced EF. Moreover, cardiac transplant patients exhibit worse cardiovascular prognosis, high mortality, and more admissions to the intensive care unit. In general, COVID-19 seems to de-teriorate the clinical status of HF and favors the development of acute respiratory distress syndrome and multiorgan failure, especially in the presence of cardiovascular comorbidities such as diabetes mellitus, kidney dysfunction, and older age. COVID-19 may induce new-onset HF with complex mechanisms that involve myocardial injury. Indeed, myocardial injury comprises a large category of detrimental effects for the myocardium, such as myocardial infarction type 1 or type 2, Takotsubo cardiomyopathy, microvascular dysfunction and myocarditis, which are not easily distinguished by HF. The pathophysiologic mechanisms mainly involve direct myocardial damage by severe acute respiratory syndrome coronavirus 2, cytokine storm, hypercoagulation, inflammation, and endothelial dysfunction. The proper management of patients with COVID-19 involves careful patient evaluation and ongoing monitoring for complications such as HF.

10.
Biomedicines ; 10(10)2022 Sep 23.
Article in English | MEDLINE | ID: covidwho-2043576

ABSTRACT

Capillary leak syndrome is an under-diagnosed condition leading to serious hypoalbuminemia with diffuse edema, pulmonary edema, severe hypotension, and possibly death. Sepsis leading to hemophagocytic lymphohistiocytosis (HLH) is a major risk factor; however, capillary hyper-permeability is the core underlying pathophysiological mechanism. Endothelial dysfunction plays a major role in cardiometabolic disease through insulin resistance, lipotoxicity, and, eventually, oxidative stress and chronic inflammation. We review the literature concerning the aforementioned mechanisms as well-established risk factors for adverse COVID-19 outcomes. We especially focus on data regarding the underlying endothelial effects of SARS-CoV-2 infection, including direct damage and increased vascular leakage through a hyper-inflammatory cascade and diminished nitric oxide bioavailability. Interestingly, an increased incidence of hypoalbuminemia has been observed in patients with severe COVID-19, especially those with underlying cardiometabolic disease. Importantly, low albumin levels present a strong, positive association with poor disease outcomes. Therefore, in this review article, we highlight the important role of cardiovascular risk factors on endothelium integrity and the possible link of endothelial damage in the hypoalbuminemia-associated adverse prognosis of COVID-19 patients.

12.
Vaccines (Basel) ; 10(5)2022 May 18.
Article in English | MEDLINE | ID: covidwho-1928673

ABSTRACT

Healthcare workers are at high risk of influenza virus infection as well as of transmitting the infection to vulnerable patients who may be at high risk of severe illness. The aim of this cross-sectional study was to investigate the prevalence and related factors of influenza vaccination coverage (2020-2021flu season), among members of the Athens Medical Association in Greece. This survey employed secondary analysis data from a questionnaire-based dataset on COVID-19 vaccination coverage and associated factors from surveyed doctors, registered within the largest medical association in Greece. All members were invited to participate in the anonymous online questionnaire-based survey over the period of 25 February to 13 March 2021. Finally, 1993 physicians (60% males; 40% females) participated in the study. Influenza vaccination coverage was estimated at 76%. Logistic regression analysis demonstrated that older age (OR = 1.02; 95% C.I. = 1.01-1.03), history of COVID-19 vaccination (OR = 2.71; 95% C.I. = 2.07-3.56) and perception that vaccines in general are safe (OR = 16.49; 95% C.I. = 4.51-60.25) were found to be independently associated factors with the likelihood of influenza vaccination coverage. Public health authorities should maximize efforts and undertake additional actions in order to increase the percentage of physicians/health care workers (HCWs) being immunized against influenza. The current COVID-19 pandemic offers an opportunity to focus on tailored initiatives and interventions aiming to improve the influenza vaccination coverage of HCWs in a spirit of synergy and cooperation.

13.
Int J Environ Res Public Health ; 19(8)2022 04 10.
Article in English | MEDLINE | ID: covidwho-1785688

ABSTRACT

The COVID-19 pandemic has had a major impact on health, economy, society and education. In the effort to return to normalcy, according to the instructions of the Greek Government for the resumption of the operation of schools, a screening Rapid Antigen Detection Test with the method of self-testing is required for students twice per week, for the early identification and isolation of positive cases. We aimed to pivotally investigate the knowledge, attitudes and practices related to self-testing procedures against COVID-19 among Greek students. A questionnaire was distributed to a convenient sample of students in the region of Athens. Information about the vaccination coverage against SARS-CoV-2 was also obtained. Our study included 1000 students, with 70% of them having an average grade at school. Most of the participants were aware of coronavirus (98.6%) and the self-test (95.5%). The vast majority of students (97%) performed self-testing twice per week, with the 70% them being assisted by someone else. Nearly one sixth of the participants had been infected by COVID-19 (14%) while 36% of them have already been vaccinated against SARS-CoV-2. In conclusion, we report high compliance with the COVID-19 self-testing procedure among students in Attica, Greece. Older age adolescents are more likely to not comply with the regulations of self-testing. Consequently, tailored interventions targeted at older age adolescents are warranted in order to increase the acceptability of self-testing.


Subject(s)
COVID-19 , Adolescent , COVID-19/diagnosis , COVID-19/epidemiology , Greece/epidemiology , Health Knowledge, Attitudes, Practice , Humans , Pandemics/prevention & control , Pilot Projects , SARS-CoV-2 , Self-Testing , Students
14.
Biomedicines ; 10(2)2022 Jan 24.
Article in English | MEDLINE | ID: covidwho-1649346

ABSTRACT

Severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) and the resulting coronavirus disease-19 (COVID-19) have led to a global pandemic associated with high fatality rates. COVID-19 primarily manifests in the respiratory system as an acute respiratory distress syndrome following viral entry through the angiotensin-converting enzyme-2 (ACE2) that is present in pulmonary epithelial cells. Central in COVID-19 is the burst of cytokines, known as a "cytokine storm", and the subsequent widespread endothelial activation, leading to cardiovascular complications such as myocarditis, arrhythmias, and adverse vascular events, among others. Genetic alterations may play an additive, detrimental role in the clinical course of patients with COVID-19, since gene alterations concerning ACE2, major histocompatibility complex class I, and toll-like receptors may predispose patients to a worse clinical outcome. Since the role of inflammation is quintessential in COVID-19, pharmacologic inhibition of various signaling pathways such as the interleukin-1 and -6, tumor necrosis factor-alpha, interferon gamma, Janus kinase-signal transducer and activator of transcription, and granulocyte-macrophage colony-stimulating factor may ameliorate the prognosis following timely administration. Finally, frequently used, non-specific anti-inflammatory agents such as corticosteroids, statins, colchicine, and macrolides represent additional therapeutic considerations.

15.
Curr Med Chem ; 29(21): 3790-3805, 2022.
Article in English | MEDLINE | ID: covidwho-1496773

ABSTRACT

BACKGROUND: Several studies have revealed the link between Coronavirus Disease 2019 (COVID-19) and endothelial dysfunction. To better understand the global pattern of this relationship, we conducted a meta-analysis on endothelial biomarkers related to COVID-19 severity. METHODS: We systematically searched the literature up to March 10, 2021, for studies investigating the association between COVID-19 severity and the following endothelial biomarkers: Intercellular Adhesion Molecule 1 (ICAM-1), Vascular Cell Adhesion Molecule 1 (VCAM-1), E-selectin, P-selectin, Von Willebrand Factor Antigen (VWFAg), soluble Thrombomodulin (sTM), Mid-regional pro-adrenomedullin (MR-proADM), and Angiopoietin-2 (Ang-2). Pooled estimates and mean differences (PMD) for each biomarker were reported. RESULTS: A total of 27 studies (n=2213 patients) were included. Critically ill patients presented with higher levels of MR-proADM (PMD: 0.71 nmol/L, 95% CI: 0.22 to 1.20 nmol/L, p=0.02), E-selectin (PMD: 13,32 pg/ml, 95% CI: 4,89 to 21,75 pg/ml, p=0.008), VCAM-1 (PMD: 479 ng/ml, 95% CI: 64 to 896 ng/ml, p=0.03), VWF-Ag (PMD: 110.5 IU/dl, 95% CI: 44.8 to 176.1 IU/dl, p=0.04) and Ang-2 (PMD: 2388 pg/ml, 95% CI: 1121 to 3655 pg/ml, p=0.003), as compared to non-critically ill ones. ICAM-1, P-selectin and thrombomodulin did not differ between the two groups (p>0.05). CONCLUSION: Endothelial biomarkers display significant heterogeneity in COVID-19 patients, with higher MR-proADM, E-selectin, VCAM-1, VWF-Ag, and Ang-2 levels being associated with increased severity. These findings strengthen the evidence on the key role of endothelial dysfunction in disease progress.


Subject(s)
COVID-19 , Vascular Diseases , Biomarkers/metabolism , COVID-19/diagnosis , E-Selectin/metabolism , Endothelium, Vascular/metabolism , Humans , Intercellular Adhesion Molecule-1/metabolism , Thrombomodulin/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Vascular Diseases/metabolism , von Willebrand Factor/analysis , von Willebrand Factor/metabolism
16.
Int J Mol Sci ; 22(20)2021 Oct 16.
Article in English | MEDLINE | ID: covidwho-1470892

ABSTRACT

BACKGROUND: Atherosclerotic cardiovascular diseases are characterized by a dysregulated inflammatory and thrombotic state, leading to devastating complications with increased morbidity and mortality rates. SUMMARY: In this review article, we present the available evidence regarding the impact of inflammation on platelet activation in atherosclerosis. Key messages: In the context of a dysfunctional vascular endothelium, structural alterations by means of endothelial glycocalyx thinning or functional modifications through impaired NO bioavailability and increased levels of von Willebrand factor result in platelet activation. Moreover, neutrophil-derived mediators, as well as neutrophil extracellular traps formation, have been implicated in the process of platelet activation and platelet-leukocyte aggregation. The role of pro-inflammatory cytokines is also critical since their receptors are also situated in platelets while TNF-α has also been found to induce inflammatory, metabolic, and bone marrow changes. Additionally, important progress has been made towards novel concepts of the interaction between inflammation and platelet activation, such as the toll-like receptors, myeloperoxidase, and platelet factor-4. The accumulating evidence is especially important in the era of the coronavirus disease-19 pandemic, characterized by an excessive inflammatory burden leading to thrombotic complications, partially mediated by platelet activation. Lastly, recent advances in anti-inflammatory therapies point towards an anti-thrombotic effect secondary to diminished platelet activation.


Subject(s)
Atherosclerosis/pathology , COVID-19/pathology , Inflammation Mediators/metabolism , Atherosclerosis/metabolism , COVID-19/virology , Endothelium, Vascular/metabolism , Humans , Neutrophils/metabolism , Nitric Oxide/metabolism , Platelet Activation , SARS-CoV-2/isolation & purification , von Willebrand Factor/metabolism
17.
Cardiovasc Res ; 117(14): 2705-2729, 2021 12 17.
Article in English | MEDLINE | ID: covidwho-1411978

ABSTRACT

The cardiovascular system is significantly affected in coronavirus disease-19 (COVID-19). Microvascular injury, endothelial dysfunction, and thrombosis resulting from viral infection or indirectly related to the intense systemic inflammatory and immune responses are characteristic features of severe COVID-19. Pre-existing cardiovascular disease and viral load are linked to myocardial injury and worse outcomes. The vascular response to cytokine production and the interaction between severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and angiotensin-converting enzyme 2 receptor may lead to a significant reduction in cardiac contractility and subsequent myocardial dysfunction. In addition, a considerable proportion of patients who have been infected with SARS-CoV-2 do not fully recover and continue to experience a large number of symptoms and post-acute complications in the absence of a detectable viral infection. This conditions often referred to as 'post-acute COVID-19' may have multiple causes. Viral reservoirs or lingering fragments of viral RNA or proteins contribute to the condition. Systemic inflammatory response to COVID-19 has the potential to increase myocardial fibrosis which in turn may impair cardiac remodelling. Here, we summarize the current knowledge of cardiovascular injury and post-acute sequelae of COVID-19. As the pandemic continues and new variants emerge, we can advance our knowledge of the underlying mechanisms only by integrating our understanding of the pathophysiology with the corresponding clinical findings. Identification of new biomarkers of cardiovascular complications, and development of effective treatments for COVID-19 infection are of crucial importance.


Subject(s)
COVID-19/complications , Cardiovascular Diseases/virology , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/enzymology , COVID-19/etiology , COVID-19/physiopathology , COVID-19/therapy , Cardiometabolic Risk Factors , Cardiovascular Diseases/enzymology , Cardiovascular Diseases/physiopathology , Clinical Trials as Topic , Humans , Inflammation/complications , Inflammation/virology , Microcirculation , Sex Characteristics , Post-Acute COVID-19 Syndrome
18.
Int J Mol Sci ; 22(12)2021 Jun 21.
Article in English | MEDLINE | ID: covidwho-1282515

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been associated with excess mortality worldwide. The cardiovascular system is the second most common target of SARS-CoV-2, which leads to severe complications, including acute myocardial injury, myocarditis, arrhythmias, and venous thromboembolism, as well as other major thrombotic events because of direct endothelial injury and an excessive systemic inflammatory response. This review focuses on the similarities and the differences of inflammatory pathways involved in COVID-19 and atherosclerosis. Anti-inflammatory agents and immunomodulators have recently been assessed, which may constitute rational treatments for the reduction of cardiovascular events in both COVID-19 and atherosclerotic heart disease.


Subject(s)
Atherosclerosis/pathology , COVID-19/pathology , Adrenal Cortex Hormones/therapeutic use , Anti-Inflammatory Agents/therapeutic use , Atherosclerosis/complications , Atherosclerosis/drug therapy , Atherosclerosis/prevention & control , COVID-19/complications , COVID-19/virology , Chemokines/metabolism , Cytokine Release Syndrome/etiology , Cytokines/metabolism , Humans , Prognosis , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL